
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 325 (2009) 742–754
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Vibration reduction on beams subjected to moving loads using linear
and nonlinear dynamic absorbers
Farhad S. Samani a, Francesco Pellicano b,�

a Department of Mechanical Engineering, Bahonar University of Kerman, Kerman, Iran
b Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, V. Vignolese, 905, 41100 Modena, Italy
a r t i c l e i n f o

Article history:

Received 22 September 2008

Received in revised form

7 April 2009

Accepted 8 April 2009
Handling Editor: A.V. Metrikine
governing the beam dynamics are reduced to an ordinary differential equation set by
Available online 17 May 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.04.011

responding author. Tel.: +39 0592056154; fax

ail addresses: farhad.samani@yahoo.com (F.S.
a b s t r a c t

The present work is focused on the analysis of the effectiveness of dynamic vibration

absorbers applied to beams excited by moving loads. The goal is to test the performance

of nonlinear dampers in comparison with the classical linear damper. Simply supported

beams are analysed using the Euler–Bernoulli theory, the partial differential equation

means of the Galerkin–Bubnov method, and a multimode expansion of the displace-

ment field allows accurate analysis of the problem. The performance of the dynamic

dampers in vibration reduction is estimated through two indicators, the maximum

amplitude of vibration, and the portion of energy dissipated by the dynamic damper.

The same indicators are used as objective functions for developing an optimisation

approach. Two conservation laws are found for the optimal parameters and beam

geometry for nonlinear (cubic) dynamic dampers.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Studies on oscillations of bridges under travelling loads date back to the middle of the nineteenth century, when the
early railways were developed; such applications are the most important examples of travelling loads. Readers interested
in a comprehensive treatment of structures excited by moving loads are advised to read Ref. [1], which reports several
applications.

One of the first modern studies on the subject of moving loads is due to Timoshenko et al. [2], who found an analytical
solution to the problem, and derived an expression for the critical velocity. Considering moving masses instead of moving
loads seems to be more realistic; however, in Ref. [3] it was shown that the behaviour of beams under moving loads or
moving masses is very similar when the moving mass is assumed to be small in comparison to the beam mass.

The vibration of structures can be controlled by suitable structural design or by using active/passive devices, which are
of particular interest when no modifications can be made to the structure. Primary qualities of passive devices include
extremely low maintenance requirements and no need for supplied power.

A short analysis of the literature strictly related to the present work will now be presented. Wu [4] proposed the use of a
linear dynamic absorber for beams subjected to moving loads, with the damper positioned in the middle of the beam span.
The finite element method (FEM) was used to model the beam, and the dynamics were analysed after the governing
equations were reduced to the first modal coordinate; i.e., the N-dof problem arising from the FEM was reduced to a 1-dof
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model. This simplified model was used to obtain optimal values for the stiffness and damping ratio of the absorber,
following Den Hartog’s approach [5]. It should be mentioned that in the Wu model, the absorber equation was modified to
take the spring mass into account.

Greco and Santini [6] analysed a beam under moving loads, with two rotational viscous dampers attached at its ends,
and showed numerically that the effectiveness of the damper is strongly dependant on the speed of the moving load. Lee
et al. [7] analysed the dynamics of a 2-dof system consisting of a grounded linear oscillator coupled to a light mass through
an essentially nonlinear spring. They found that the periodic orbits of the undamped system greatly influence the damped
dynamics, and presented evidence that complicated transitions between modes occur in the damped transient motion of
this system.

Kwon et al. [8] proved that when a TGV train (Train a Grande Vitesse, French ‘‘high-speed train’’) passes a bridge, the
maximum vertical displacement induced by the TGV is decreased by 21 percent and the free vibration dies more quickly
when a tuned mass damper (TMD) is placed at the middle of the bridge. In Ref. [9], a new approach was presented for the
reduction of the resonant vibration of simply supported beams under moving loads. In this treatment, viscous dampers
were used to connect the main beam, which carries the loads, to an auxiliary beam placed underneath the main one. The
results show that the resonant response of the main beam can be drastically reduced with this type of device.

The application of passive TMDs to suppress train-induced vibration on bridges was studied in Ref. [10]. It was shown
that if the maximum dynamic response of the bridge and train are dominated by the resonant response within the design
range of train speeds, a passive TMD performs well in vibration control.

Yau and Yang [11] studied vibration reduction for cable-stayed bridges subjected to the passage of high-speed trains.
The train was modelled as a series of spring masses, the bridge deck and towers as nonlinear beam-column elements,
and the stay cables as truss elements with Ernst’s equivalent modulus. The numerical examples demonstrated that the
proposed hybrid TMD system, which consisted of several dynamic dampers tuned to different dominant frequencies of the
main structure, is effective for suppressing the multiple resonant vibration peaks encountered in cable-stayed bridges used
by high-speed trains.

In Ref. [12], it was proved that TMDs tuned to a particular mode have a negligible effect on the other modes. The
effectiveness of TMDs in reducing the vibration of primary structures subjected to random loads depends heavily upon the
distribution of the eigenfrequencies.

In Ref. [13], Lin et al. studied an elastic beam subjected to a moving vehicle. They used a linear TMD as an energy-
absorbing system, and presented results regarding the parameters of several absorbers. The roughness of the road was
considered, with the assumption that the road profile could be modelled as a stationary random process. Lin [14] studied
the use of a multi-time scale fuzzy controller for vibration reduction of an elastic continuum carrying a moving
mass–spring–damper oscillator. This method is very effective for reducing the maximum deflection.

It was shown recently in Refs. [15–17] that under certain conditions, essentially nonlinear dynamic dampers can
passively absorb energy from a linear non-conservative (damped) structure, acting as an essentially nonlinear energy sink
(NES). Georgiades and Vakakis [15] provided numerical evidence of broadband passive targeted energy transfer from a
linear flexible beam under shock excitation to a local NES. They showed numerically that an appropriately designed and
placed NES can passively absorb and locally dissipate a significant fraction of the shock energy of the beam, up to an
optimal value of 87 percent. The essential nonlinearity (nonlinearisable) of the attachment enables it to resonate with any
of the linearised modes of the substructure, leading to the energy pumping phenomenon, i.e., passive, one-way, irreversible
transfer of energy from the substructure to the attachment [16].

In the present work, the dynamics of an Euler–Bernoulli beam subjected to a moving load and coupled to a linear or
essentially nonlinear (cubic) dynamic damper are studied. The goal is to find the optimal damper parameters (location,
stiffness, and damping), and to compare the effectiveness of linear and nonlinear dampers. The goals of the optimisation
are to minimise the absolute maximum deflection, or to maximise the amount of energy transferred from the beam to the
damper. The temporal and spatial positions of the maximum beam deflection are unknown; therefore, a suitable search
must be carried out. When the portion of the input energy dissipated by the dynamic damper is evaluated, it is crucial to
correctly estimate the duration of the phenomenon.

The partial differential equations governing the beam dynamics have been reduced to a set of ordinary differential
equations (ODEs) by means of the Galerkin–Bubnov approach, which leads to a linear or nonlinear system of ODEs,
depending on the type of damper connected to the beam. Eigenfunctions of the beam problem without dampers are
considered in the displacement expansion. Both linear and nonlinear models have been tested by comparison with the
literature, and convergence tests have been performed in order to truncate the series without loss of accuracy.

The evaluation of the objective functions requires an accurate solution of the transient vibration of the system of ODEs.
In order to use a general approach, the dynamics are studied by numerically integrating the ODEs using the Gauss–Kronrod
method (Mathematica [18]), which is based on adaptive Gaussian quadrature with error estimation, through evaluation at
Kronrod points.

Two optimisation strategies are used in this paper. The first is a brute force approach that consists of spanning
the parameter space; such an approach suffers from a huge computational cost, and gives coarse results when the
parameter space is large. The second approach is a random search, which consists of randomly selecting all parameters
of interest, such method is slightly more efficient than the brute force approach, and more suitable for a large parameter
space.
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2. Dynamical system and basic equations

Consider the system represented in Fig. 1; a simply supported beam is connected to a small mass through a linear or
nonlinear spring and a linear viscous damper, and the beam is loaded with a point load that can be either moving or time-
varying. In this paper, ‘‘bare beam’’ means the beam without any attachment, see Ref. [4].

Using linear Euler–Bernoulli theory to model the beam, the equations of motion of the system are given by

EIy;xxxxðx; tÞ þ rAy;ttðx; tÞ þ ½f ðuÞ þ lu;tðtÞ�dðx� dÞ ¼ Fðx; tÞ; x 2 ð0; LÞ; t40 (1a)

yð0; tÞ ¼ 0; yðL; tÞ ¼ 0; y;xxð0; tÞ ¼ 0; y;xxðL; tÞ ¼ 0 (1b)

yðx;0Þ ¼ 0; y;tðx;0Þ ¼ 0 (1c)

m0v;ttðtÞ � f ðuÞ � lu;tðtÞ ¼ 0; vð0Þ ¼ 0; v;tð0Þ ¼ 0; t40 (2a)

uðtÞ ¼ yðd; tÞ � vðtÞ; f ðuÞ ¼ ku or Cu3 (2b)

The beam dynamics are governed by the PDE represented by Eq. (1a), with simply supported boundary conditions (1b)
and initial conditions (1c). The term ½f ðuÞ þ lu;tðtÞ�dðx� dÞ represents the force exerted by the dynamic damper, f ðuÞ is the
stiffness force (see Eq. (2b) for definition), lu;tðtÞ is the viscous damping force, and dðx� dÞ defines the location of the
dynamic damper. Fðx; tÞ is the external force, which can have time dependences in the amplitude (transient excitation) or
the position along the beam (moving load). Eq. (2a) governs the dynamics of the dynamic damper, y(x, t) is the transverse
displacement field of the beam (down is positive), y;x ¼ qy=qx (similar notation is used for other derivatives), E is the
Young’s modulus, I is the moment of inertia of the cross-sectional area, m ¼ rA is the mass per unit length, r is the material
density, A is the cross-sectional area, v(t) is the absolute position of the mass m0, x ¼ d represents the location of the
damper on the beam, l is the damping coefficient of the viscous damper, and m0 is the mass of the dynamic damper.

The attached mass is lightweight compared to the beam mass. Using a heavy dynamic damper gives more effective
beam vibration reduction, however, the static deflection of the beam increases as well. Therefore, the mass of the absorber
cannot be too large; in this work, the lumped mass of the absorber is taken to be 5 percent of the total mass of the beam [4].

The dynamics of the system represented by Eqs. (1) and (2) are analysed after projecting the partial differential Eq. (1a)
into a complete, orthonormal basis. For the present problem, the eigenfunctions of the linear operator representing the
simply supported beam with no attachments can be used.

frðxÞ ¼ ð2=mLÞ1=2 sinðrpx=LÞ; or ¼ ðrpÞ2ðEI=mL4Þ1=2; r ¼ 1;2; . . . (3a)

where or is the natural frequency of the rth mode.
The eigenfunctions satisfy the following orthonormality conditions,

Z L

0
mfiðxÞfjðxÞdx ¼ dij;

Z L

0
fiðxÞðEIf00j ðxÞÞ

00 dx ¼ o2
j dij; i; j ¼ 1;2; . . . (3b)

where dij is Kronecker’s delta and ð�Þ0 ¼ dð�Þ=dx.
A C

f (u)

dynamic damper

F (x, t)
V (t) =

B

Fig. 1. The beam model.
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It can be assumed that the transverse vibration of the beam is of the form

yðx; tÞ ¼
X1
r¼1

arðtÞfrðxÞ (4)

where the arðtÞ are unknown functions of time (modal coordinates) and the frðxÞ are the normalised eigenfunctions.
By substituting Eq. (4) into Eqs. (1) and (2), projecting onto the pth eigenfunction, and using the orthonormality

conditions, the following equations are obtained

€apðtÞ þ 2xpop _apðtÞ þo2
papðtÞ þ DðtÞ þ l

X1
r¼1

_arðtÞfrðdÞ � _vðtÞ

" #( )
fpðdÞ ¼ F̄ðtÞ; p ¼ 1;2; . . . (5a)

m0 €vðtÞ � DðtÞ þ l _vðtÞ �
X1
r¼1

_arðtÞfrðdÞ

" #
¼ 0 (5b)

where _apðtÞ ¼ dap=dt and

DðtÞ ¼ k
P1
r¼1

arðtÞfrðdÞ � vðtÞ

" #
For linear dynamic damper ð5cÞ

DðtÞ ¼ C
P1
r¼1

arðtÞfrðdÞ � vðtÞ

" #3

For nonlinear dynamic damper ð5dÞ

8>>>>>>><
>>>>>>>:

F̄ðtÞ ¼ F0fpðVtÞ H L=V � t
� �� �

For moving load ð5eÞ

F̄ðtÞ ¼ F1ðtÞfpðxF Þ For transient constant load ð5fÞ

8><
>:

which are obtained by considering the following forces in Eq. (1a)

Fðx; tÞ ¼ F0dðx� VtÞ H L
V � t
� �h i

For moving load ð6aÞ

Fðx; tÞ ¼ F1ðtÞdðx� xF Þ For transient constant load ð6bÞ

8><
>:

where d is the Dirac delta function, and H(t) is the Heaviside function:

HðtÞ ¼
0; to0

1; t40

(
(7)

A viscous damping term is added to the generic modal Eq. (5a) after projection.
The attachment couples to all modes through the infinite sum terms. In the case of a linear dynamic damper, one can

transform system (5) by finding the new vibration modes; conversely, in the case of a nonlinear spring, the system cannot
be decoupled.

The transient dynamics are studied by numerically integrating the dynamical system represented by Eqs. (5a) and (5b)
after truncating series (4); the truncation is suitably chosen by checking the convergence of the expansion.
3. Validation

3.1. Nonlinear dynamic damper and fixed transient load

In order to check the accuracy of the present model, the case of a beam connected to a nonlinear dynamic damper and
loaded with a transient force at a fixed position on the beam is now investigated, and compared with Ref. [15].

Consider the system of Fig. 1, with V ¼ 0, xF ¼ constant, and f ðuÞ ¼ Cu3. An impulsive force (a half sine pulse) excites the
beam

F1ðtÞ ¼
Fa sinð2pt=TÞ; 0ptoT=2

0; to0 and tXT=2

(
(8)

For comparison, the following parameters are considered: Fa ¼ 10.0 N, T ¼ (0.4/p)s, EI ¼ 1.0 Pa m4, rA ¼ 1.0 kg/m,
2xpop ¼ 0.05 s�1, L ¼ 1.0 m, m0 ¼ 0.1 kg, xF ¼ 0.3 m, l ¼ 0.05 N s/m, d ¼ 0.65 m, and C ¼ 1.322�103 N/m3. Note that in this
model, the modal damping ratio is not constant for the beam; for example, x1 ¼ 0.00253, x2 ¼ 0.000633,y .
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The portion of the input energy dissipated by the viscous damper of the NES (the dynamic damper is also called
nonlinear energy sink, see Ref. [15]) at time t1 is computed by the expression

Z ¼ ENES

Ein
¼

R t1
0 l½ _vðtÞ �

Pn
r¼1

_arðtÞfrðdÞ�
2 dtR t0

0 Fi½
Pn

r¼1
_arðtÞfrðxF Þ�dt

(9)

where in the case of a moving load, Fi ¼ F0 (see Eq. (6a)) and xF ¼ Vt; in the case of an impulse load (present section), Fi ¼ F1

(see Eqs. (6b) and (8)) and xF ¼ constant.
ENES is the energy passively absorbed and locally dissipated by the NES, t1 is assumed to be large enough to assure that

the transient dynamics are nearly damped, Ein represents the total input energy of the beam due to the load, and t0 ¼ T=2 is
the impulse duration.

Figs. 2 and 3 show the comparison between the present model and the results of Ref. [15]; series (4) is truncated at
the fifth term and t1 is set equal to 150 s. Fig. 2 shows y(0.8, t) , the response of the beam at x ¼ 0.8 m, and Fig. 3 shows
the fraction of energy dissipated by the viscous damper, Z, for different NES positions. The black dots are reproduced from
Ref. [15], and the continuous line represents the present results; good agreement between Ref. [15] and the present model
is found.

Fig. 3 shows that for the present problem (fixed location and impulsive excitation), the best position of the dynamic
damper is not in the middle, due to broadband excitation and the location of the force.
3.2. Linear dynamic damper and moving load

Further verification of the present model is now carried out, in order to check the accuracy of the approach in the case of
moving loads; data from Ref. [4] are used for this purpose.

Consider the system of Fig. 1, with V(t) ¼ constanta0 and f ðuÞ ¼ ku; the external force has constant amplitude but is
moving along the beam, and the dynamic absorber is linear. The external force is given by Eq. (6a).
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For this simulation, the system parameters are: E ¼ 206 800 MPa, r ¼ 7820 kg/m3, A ¼ 0.03 m�0.03 m, L ¼ 4 m,
F0 ¼ 9.8 N, xp ¼ 0 (p ¼ 1,2,y) and m0 ¼ 1.4076 kg.

Figs. 4(a) and (b) show the maximum deflection of the mid-span of the beam against the velocity of the moving load.
There is a maximum close to V ¼ 21.5 m/s, which is 61 percent of the critical velocity as defined in Ref. [1] for moving loads
without absorbers. The dynamics are mainly governed by the first mode of the beam, as proven by comparing Figs. 4(a) and
(b), where one and five mode expansions are used, respectively. Moreover, good agreement with Ref. [4] is found; the slight
differences at high speeds are probably due to the beam modelling. Wu [4] used a finite element method and numerically
reduced the governing equations to the first beam mode; here, exact eigenfunctions are used and the reduction of the PDE
to ODEs is done analytically. Additionally, different time integration approaches are used.
4. Optimisation of the dynamic damper

In the present section, linear and nonlinear dynamic dampers acting on the beam defined in the previous section (Wu
model [4]) are analysed, and different optimisation approaches are applied to find the optimal absorber parameters. When
other kinds of beams are analysed, specific data will be given. Two indicators are considered for evaluation of the absorber
performance and for optimisation purposes: the maximum vibration amplitude or the factor Z (see Eq. (9)).
4.1. Optimisation of the linear dynamic damper

4.1.1. Maximum deflection approach

Consider the system of Fig. 1, with xp ¼ 0.01 (p ¼ 1,2,y), V ¼ 21.5 m/s, and f ðuÞ ¼ ku. The optimisation of the dynamic
damper is focused on the minimisation of the maximum beam deflection. The stiffness, the viscous damping, and the
location of the dynamic absorber can be varied to find the optimum values. It can be proven that the optimal absorber has
zero dissipation; in order to avoid numerical problems and improve the time integration efficiency, a very small dissipation
of l ¼ 0.1 is considered. This means that, for example, in the case of optimal stiffness, the damping ratio of the absorber will
be x ¼ 0.001. The maximum deflection for the undamped bare beam (without dynamic absorber, and with xp ¼ 0,
p ¼ 1,2,y) is 1.6279 mm; for the damped bare beam the maximum deflection is 1.6042 mm. In Figs. 5(a) and (b), the effects
of the dynamic damper location and the stiffness on the maximum deflection are presented. Fig. 5(a) is obtained using
k ¼ 1795 N/m, and Fig. 5(b) results from using d ¼ 0.55L (such stiffness and location are the optimal absorber parameters),
and the maximum deflection occurs at xtop ¼ 0.53L. It should be noted that the optimal damper location is not sensitive
to variation of the other parameters. The maximum transverse deflection, which occurs at xtop ¼ 0.53L, is 1.5054 mm
(6.15 percent reduction with respect to the bare beam), and the maximum deflection of the middle of the beam is
1.4989 mm.
4.1.2. Energy approach

The second approach is focused on maximisation of the energy dissipated by the dynamic absorber, i.e., the indicator Z
(see Eq. (9) with Fi ¼ F0 and xF ¼ Vt). The viscous damping and stiffness have been regularly sampled on a 100�100 grid,
meaning that the damping resolution is 0.4 N s/m, the stiffness resolution is 20 N/m, and the total number of cases analysed
is 10 000. The damper location is d ¼ 0.55L, and several numerical tests have proven that this parameter does not greatly
change around the middle of the beam. The portion of the input energy absorbed by the dynamic damper Z as l and k are
varied is shown in Fig. 6. The maximum, Z ¼ 88.9 percent, is obtained for l ¼ 10.5 N s/m and k ¼ 900 N/m; the behaviour of
Z is quite regular, the only maximum is located in a flat region, which assures that the optimum is robust.
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4.2. Optimisation of the nonlinear dynamic damper

4.2.1. Maximum deflection approach

Consider the system of Fig. 1, with xp ¼ 0.01 (p ¼ 1,2,y), V ¼ 21.5 m/s, and f ðuÞ ¼ Cu3. Following the previous section,
Figs. 7(a) and (b) show the maximum deflection vs. the damper location and the stiffness, respectively. In Fig. 7(a),
C ¼ 6.7�109 N/m3 and in Fig. 7(b), d ¼ 0.53L. The pair (C ¼ 6.7�109 N/m3, d ¼ 0.53L) represents the optimal point in the
parameter space; the maximum deflection occurs at xtop ¼ 0.53L. For the optimal case, the maximum transverse deflection



ARTICLE IN PRESS

2.5

2

1.5

1

0.5

0
0 10 20 30 40 50

� [Ns/m]

C
× 

(1
0-9

) 
[N

/m
3 ]

0.8

0.6

0.4

0.2

0

Fig. 8. Optimum Z, for nonlinear dynamic damper and energy approach.

y 
(0

.5
3L

, t
) [

m
m

]

t [s] t [s]

Fig. 9. Transient response of the system: (a) damped beam without dynamic damper and (b) damped beam with nonlinear dynamic damper.

F.S. Samani, F. Pellicano / Journal of Sound and Vibration 325 (2009) 742–754 749
is 1.4852 mm (7.56 percent reduction with respect to bare beam) at this point. The stiffness values of the linear and
nonlinear systems are not comparable, as they have different units.

Note that the maximum beam deflection for linear and nonlinear absorbers occurs at xtop ¼ 0.53L, but the optimal
absorber location in the nonlinear case is closer to the middle (d ¼ 0.53L), than in the linear case (d ¼ 0.55L). The reduction
of the transverse deflection is almost the same for nonlinear absorber locations from d ¼ 0.51L to 0.53L; for the sake of
brevity, details are omitted.
4.2.2. Energy approach

For the approach of maximising the absorbed energy, d ¼ 0.53L is considered, see the considerations of the previous
section. The portion of input energy absorbed by the dynamic damper Z as l and C are varied is shown in Fig. 8. The
maximum, Z ¼ 87.4 percent, is obtained at l ¼ 11 N s/m and C ¼ 0.30�109 N/m3. It is interesting to note that, for the
case of fixed shock load, the optimal nonlinear dynamic damper absorbs 87 percent of the shock energy of the beam,
see Ref. [15]. The parameters are regularly sampled, similarly to Section 4.1. The behaviour of Z is regular, as in the linear
case, and a unique maximum is found; however, gradients near the optimal point are not small, i.e., it seems less robust
than the linear case.

Figs. 9(a) and (b) show the transient response of the system without or with the dynamic absorber, respectively; these
figures show the deflection vs. time at the point x ¼ 0.53L, near the middle of the beam, where the largest oscillation along
the beam occurs. Fig. 9(a) shows the time history for the damped beam without the attachment, and Fig. 9(b) shows the
deflection of the same point with the nonlinear dynamic damper attached, and optimised for the maximum absorbed
energy (l ¼ 11 N s/m and C ¼ 0.30�109 N/m3). The effectiveness of the dynamic damper is evident. The number of
vibration cycles is strongly reduced with the damper in place, greatly improving the fatigue lifetime.

Table 1 summarises results for the undamped and damped beam, without and with a dynamic damper (linear or
nonlinear). For cases 1 and 2 of Table 1, there are no dynamic dampers and the energy cannot be pumped out from the
beam, i.e., Z must be zero. For cases 3 and 4, there is no beam damping, and the viscous dynamic damper absorbs all of the
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Table 1
Comparison between various optimisation results: moving load excitation.

Case Beam and dynamic damper

condition

Stiffness Viscous

damping l
(N s/m)

Dynamic

damper

location d

(m)

Maximum

deflection

(mm)

Position of

maximum

deflection

(m)

Time of

maximum

deflection (s)

Z
(percent)

1 Undamped beam without

dynamic damper

0 0 – 1.6279 2.11 0.1398 0

2 Damped beam (xp ¼ 0.01)

without dynamic damper

0 0 – 1.6042 2.11 0.1401 0

3 Undamped beam with linear

dynamic damper, optimal

values in Ref. [4]

877.8 N/m 12.98 2 1.6016 2.11 0.1402 99.9

4 Undamped beam with linear

dynamic damper, deflection

optimisation approach

1795 N/m 0.1 2.2 1.5260 2.12 0.1403 99.6

5 Damped beam with linear

dynamic damper, deflection

optimisation approach

1795 N/m 0.1 2.2 1.5054 2.12 0.1407 3.4

6 Damped beam with linear

dynamic damper, energy

optimisation approach

900 N/m 10.5 2.2 1.5306 2.12 0.1401 88.9

7 Damped beam with

nonlinear dynamic damper,

deflection optimisation

approach

6.7�109

N/m3

0.1 2.12 1.4852 2.12 0.1402 2.3

8 Damped beam with

nonlinear dynamic damper,

energy optimisation

approach

0.3�109

N/m3

11 2.12 1.5640 2.12 0.1398 87.4

Table 2
Results for optimisation of the nonlinear dynamic damper with various length.

Beam length L (m) 1 4 10

Velocity at which the max deflection occurs (m/s) 86 21.5 8.6

Dynamic damper mass (kg) 0.3519 1.4076 3.519

Optimised stiffness using the deflection approach, Copt (N/m3) 1.7(1015) 6.7(109) 1.7(106)

Optimised maximum deflection (mm) 0.0235 1.4852 23.53

Optimised stiffness using the energy approach, Copt (N/m3) 80(1012) 0.30(109) 80(103)

Optimised viscous damping, lopt (N s/m) 44 11 4.4

Z 87.4% 87.4% 87.4%
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energy produced by the external moving load. Therefore, if the time tends to infinity, then Z must be 100 percent;
accordingly, Z is equal to 99.9 and 99.6 percent in cases 3 and 4, respectively. For cases 5 and 7, an extremely low viscous
damping of l ¼ 0.1 is considered, and absorbs a small portion of energy, 3.4 and 2.3 percent. For cases 6 (linear) and 8
(nonlinear), Z ¼ 88.9 and 87.4 percent, respectively.

For case 3, an undamped beam with linear dynamic damper is considered using optimal values from Ref. [4], and the
deflection is reduced only 1.62 percent from the case of the bare beam (case 1). Case 4 (present optimal parameters) shows
6.26 percent deflection reduction. Moreover, case 5, with a damped beam and present optimal parameters, exhibits 6.16
percent deflection reduction from case 2 (damped bare beam). The best deflection reduction, 7.42 percent reduction from
case 2, is obtained by using the nonlinear dynamic damper of case 7.
5. Optimisation of the nonlinear dynamic damper: effect of the beam length

In order to understand the effect of the beam length on optimisation of the nonlinear dynamic damper, the following
beam lengths are considered: L ¼ 1, 4, and 10 m; the other beam parameters are the same as those in Section 3.2 (see also
Ref. [4]). The optimal location for the nonlinear dynamic damper remains close to the middle, at d ¼ 0.53L. A small viscous
damping is considered (l ¼ 0.1) when the optimisation of the maximum beam deflection is carried out. The dynamic
damper mass remains at 5 percent of the total mass of the structure; this means that the damper mass varies accordingly
with the beam length. Results have been reported in Table 2.
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Fig. 11. Portion of input energy absorbed and dissipated by the dynamic damper vs. velocity: (a) L ¼ 4 m and (b) L ¼ 10 m. - - -: linear dynamic damper

and ——: nonlinear dynamic damper.
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It is known in the literature that VcritL ¼ constant, and this result is confirmed; moreover, it is found that
CoptL

9 ¼ constant, for both the maximum deflection and the energy optimisation approaches. For example, when
optimising the maximum deflection, CoptL

9
¼ 1.7(1015)�19

¼ 6.7(109)�49
¼ 1.7(106)�109

¼ 1.7(1015) N m6; and when
optimising the absorbed energy CoptL

9
¼ 80(1012)�19

¼ 0.03(109)�49
¼ 80(103)�109

¼ 80(1012) N m6. In each case,
Zmax ¼ 87.4 percent and loptL ¼ constant ðloptL ¼ 44� 1 ¼ 11� 4 ¼ 4:4� 10 ¼ 44 NsÞ. Such conservation laws can be
extremely useful for practical designers; indeed, they define classes of structures that exhibit similar behaviour. This means
that when the optimal location and stiffness for a particular length are found, they can be straightforwardly extended to
other lengths.
6. Effect of the moving load velocity on the dynamic damper performances

Now the behaviour of optimal dynamic dampers is considered over a wide range of moving load velocities. For
optimisation of the deflection, the optimal linear and nonlinear stiffness (Table 1), along with l ¼ 0.1 N s/m, are used for
each case. For the linear dynamic damper, d ¼ 0.55L and k ¼ 1795 N/m, and for the nonlinear dynamic damper, d ¼ 0.53L

and C ¼ 6.7�109 N/m3. Fig. 10 shows the maximum deflection vs. the speed of the travelling load. Both linear and
nonlinear dynamic dampers allow improved beam behaviour over a wide range of speeds, and the nonlinear dynamic
damper is slightly more effective than the linear one in the vicinity of the maximum amplitude (V ¼ 21.5 m/s), as can be
seen in Fig. 10. At higher speeds, the linear and nonlinear dampers behave in a similar fashion; in either case, the behaviour
with dampers is better than that of the bare beam.

In the absorbed energy optimisation approach, the following damper parameters are considered: l ¼ 10.5 N s/m
and k ¼ 900 N/m for the linear dynamic damper, and l ¼ 11 N s/m and C ¼ 0.3�109 N/m3 for the nonlinear damper.
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Fig. 12. Random optimisation for linear dynamic damper.
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The damper locations are d ¼ 0.55L in the linear case, and d ¼ 0.53L in the nonlinear case. Fig. 11 depicts the fraction of the
input energy dissipated by the damper, Z, vs. the load velocity for two beam lengths. It is clear that the linear dynamic
damper is more effective at absorbing energy than the nonlinear damper; such behaviour seems to be independent of the
beam length. These dynamic dampers are more effective around the first critical load velocity; in fact these parameters are
optimised at this velocity.
7. Random optimisation

In this section, the optimal parameter set is sought by randomly sampling the parameter space with a uniform
distribution. The location of the dynamic damper has a small effect on the two present goal functions (maximum deflection
and Z), and therefore, only the stiffness and viscous damping are considered in the optimisation process. The total number
of cases for the random optimisation is 8000, on the same order as the uniform sampling approach.

For the linear dynamic damper, the optimisation is carried out with the following parameter set (kA[0, 2000 N/m],
l A[0, 20 N s/m]).

Figs. 12(a) and (b) show the effect of the viscous damping and stiffness on the maximum deflection, and Figs. 12(c) and
(d) show the effect of the same parameters on Z.

Fig. 12 is obtained from the 2-d random search. Since the surface representing the results cannot be easily represented,
because of the random distribution of data, a lateral view of this surface is represented. This figure gives some general
information about the damper performances; for example, let us consider Fig. 12(a) and l ¼ 10 N s/m; this shows the
variation of the maximum deflection as the stiffness k is varied. Even though k cannot be identified from Fig. 12(a) alone, by
using Figs. 12(a) and (b), one can easily read the optimal values of l and k. In Figs. 12(a) and (b), point A indicates
the optimum with respect to oscillation amplitude (k ¼ 1682 N/m, l ¼ 0.0749 N s/m), and the maximum amplitude of
oscillation is 1.5055 mm (regular sampling gave 1.5054 mm for k ¼ 1795 N/m and l ¼ 0.1 N s/m). Point B shows the
maximum deflection of the bare damped beam, ymax ¼ 1.6042 mm. In Figs. 12(c) and (d), point C represents the optimum
with respect to absorbed energy (k ¼ 899 N/m, l ¼ 10.51 N s/m), and the energy absorption is 88.9 percent of the input
energy (regular sampling gave Z ¼ 88.9 percent for k ¼ 900 N/m and l ¼ 10.5 N s/m). By examining Fig. 12(c) near the
origin, it can be seen that with l ¼ 0, the dynamic damper cannot absorb energy (Z ¼ 0).

The random optimisation obtains results quite close to those found by regular sampling. By using this method, the effect
of each parameter becomes clearer in some special situations. For example, Fig. 12(a) shows that high values of the stiffness
tend to decrease the effect of viscous damping on the maximum deflection. Fig. 12(b) clearly shows that for kE500 N/m,
the viscous damping has a small effect on the maximum deflection.
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In the case of the nonlinear dynamic damper, the optimisation is carried out with the following parameter set (CA[0,
15�109 N/m3], lA[0, 40 N s/m]). Point A of Figs. 13(a) and (b) indicates the optimum with respect to the maximum
deflection (C ¼ 6.73�109 N/m3 and l ¼ 0.0347 N s/m); the deflection is ymax ¼ 1.4850 mm (in the case of uniform
sampling, ymax ¼ 1.4852 mm, C ¼ 6.7�109 N/m3, and l ¼ 0.1 N s/m were found). Point B of Figs. 13(a) and (b) shows the
deflection of the bare damped beam, ymax ¼ 1.6042 mm. Point C of Figs. 13(c) and (d) represents the optimum with respect
to the absorbed energy. The dynamic damper can absorb up to 87.3 percent of the input energy, with a stiffness
of C ¼ 0.298�109 N/m3 and l ¼ 10.60 N s/m (uniform sampling gives Zmax ¼ 87.4 percent, for C ¼ 0.3�109 N/m3 and
l ¼ 11 N s/m).
8. Conclusions

The performances of linear and nonlinear dynamic absorbers applied to beams excited by moving loads are
investigated; the analysis is focused on the transient structural response. Several optimisation strategies are considered, in
order to obtain the best set of parameters with respect to the maximum amplitude of vibration or the amount of energy
absorbed.

It is confirmed that dynamic dampers are capable of reducing the vibration amplitude in the presence of excitations due
to moving loads. Essentially nonlinear (cubic) dynamic dampers are more suitable for reducing the maximum amplitude of
vibration, and linear dynamic dampers behave better when the goal is to maximise the vibration energy pumped out from
the structure.

The location of the absolute maximum deflection of the beam is near the middle (x ¼ 0.53L) for the problems
investigated here; the optimal location for the nonlinear damper is at the same location (d ¼ 0.53L), and for the linear
damper it is at d ¼ 0.55L. The maximum fraction of the input energy absorbed by the nonlinear dynamic damper is about
87 percent, regardless of the type of loading or beam geometry.

Using these dynamic dampers can improve the fatigue lifetime of structures. The dynamic absorber causes faster
vibration damping, and so the number of cycles decreases, and a moderate reduction of the maximum deflection also
greatly increases the fatigue lifetime.

Interesting conservation laws are found for the optimal parameters and beam geometry. The optimal stiffness Copt for
reducing the maximum beam vibration and absorbing the vibration energy is related to the beam length, as
CoptL

9 ¼ constant. The optimal damping for maximising the energy pumped out from the structure is related to the
beam length by loptL ¼ constant. Finally, the optimal damping for reducing the maximum beam vibration is zero. It is
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worthwhile to stress that such simple conserved quantities are extremely useful for designers, as they allow generalisation
of results to a class of problems.

For the specific problem of a beam under moving loads, there is no real advantage in using essentially nonlinear (cubic)
dynamic dampers as opposed to traditional linear dynamic dampers, as the vibration reduction is quite similar. However,
the small advantage of the cubic nonlinear damper in reducing the maximum vibration amplitude encourages continued
research on other types of nonlinear dampers.
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